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Energetic	feedback	in	the	universe

Cosmic	rays	(CRs)	are	crucial!!!



Lecture	1	(today):
Modeling	CRs	in	Galaxies	and	Clusters

Lecture	2	(1/19	11:30am):
Physical	Origin	of	the	Fermi	Bubbles

Lecture	3	(1/21	1:30pm):
CR	Feedback	in	Galaxies	and	Clusters



Lecture	1	(today):
Modeling	CRs	in	Galaxies	and	Clusters

• Properties	of	CRs	in	the	Milky	Way	Galaxy
• How	to	model	CRs	in	galaxy	simulations
• Collisionless	interactions	between	CRs	and	thermal	gas
• Equations	for	classical	CR	hydrodynamics
• Equations	for	generalized	CR	hydrodynamics

• Numerical	approaches
• Current	status	and	open	questions
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Gamma-ray	all-sky	map	by	Fermi	
Point	sources	(blazars/AGNs,	pulsars)
Extended	sources	(supernova	remnants,	galaxies)		
Diffuse	emission	(background,	Fermi	bubbles,	Galactic	plane)	



• Hadronic	process	– inelastic	collisions	between	CRp
and	thermal	nuclei	in	the	ISM

Gamma-ray	production	by	CRs



• Leptonic processes	by	CRe:	
-- inverse	Compton		
-- synchrotron										
-- bremsstrahlung

Gamma-ray	production	by	CRs
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Diffuse	emission	(background,	Fermi	bubbles,	Galactic	plane)	



Properties	of	CRs	observed	on	Earth

vMostly	protons	(ni/ne ~	50-100)
vUCR ~	1eV	cm-3	~	UB ~	Urad ~	Uth
vRequire	~10%	of	mechanical	ESN
v<E>	~	3GeV

“knee”

“ankle”



Composition	=>	CRs	are	confined

Overabundance	of	Li,	Be,	B	
interpreted	as	spallation	of	CNO	
nuclei
Þ Grammage ~	3-5	g/cm2	from	
source	to	detection

Þ Residence	time	~20	Myr

ComposiSon$

•  Overabundance$of$Li,$
Be,$B$interpreted$as$
spallaSon$of$CNO$nuclei$
!!>#3>5$g/cm2$from$source$
to$detecSon$
!!>#~$$2$x107$yr$
confinement$Sme$

•  Lack$of$elements$
formed$in$supernovae$
!!>#accelerated$from$
interstellar$medium$
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Isotropy	=>	CRs	are	well	scattered

Anisotropy	of	CRs
• Increases	with	energy
• Amplitude	~	10-3 for	TeV CRs

sky coverage. The angular power spectrum can therefore be
considered the physics fingerprint of the observed 10 TeV
anisotropy, providing information about the propagation of

cosmic rays and the turbulent nature of the local interstellar
magnetic field; LIMF; Giacinti & Sigl 2012; Ahlers &
Mertsch 2017). The large discrepancy between the combined
and individual data sets is the result of the limited sky coverage
by each experiment. This systematic effect will be discussed in
Section 7.2. A residual limitation in this analysis is the fact that
ground-based experiments are generally not sensitive to the
vertical component of the anisotropy as discussed by
Abeysekara et al. (2018b) and Ahlers et al. (2016), noted
previously.
The measured quadrupole component has an amplitude of

6.8×10−4 and is inclined at 20°.7±0°.3 above (and below)
the equatorial plane. As with the dipole, the fitted quadrupole
component from the spherical harmonic expansion is also
missing the m=0 terms. However, the combination of a21 and
a22 nonvertical quadrupole components can still provide
valuable information. The experimental determination of the
vertical components of the anisotropy would require accuracies
better than the amplitude of the anisotropy (∼10−3). This
becomes easier at ultra-high energies where a dipole of much
larger amplitude has been observed(Aab et al. 2017). The full-
sky coverage also provides better constraints for fitting the
ℓ=2 and ℓ=3 multipole components and reduces correla-
tions between spherical harmonic expansion coefficients aℓm.

7. Systematics Studies

7.1. Overlapping Region

We have studied two adjacent δ bands at −20° for HAWC
and IceCube data near the horizon of each detector (see
Figure 8). The HAWC band extends from −21° to −19°, while
the IceCube band extends from −22° to −20°. The large
structure between the two data sets is consistent, though small
structures differ. It is worth noting that the overlap region is
where we expect to find the largest difference in median energy
between the two data sets (see Figure 3). The angular resolution
of both detectors also decreases toward the horizon. While
HAWC data has a smaller point-spread function at this decl.
and is sensitive to structures on smaller scales, IceCube has
better statistics, so the structures are more significant. One
particular feature that stands out is the excess in HAWC around
α=50° that coincides with the so-called region A. There
appears to be a corresponding small excess in the IceCube data.
It is also worth noting that statistics in this region are quickly
decreasing with the increasing zenith angle, as is the quality of
angular reconstructions. As a result, δ bins closer to the horizon
contain a high level of contamination from bins in higher zenith
angles.

7.2. Partial Sky Coverage

Incomplete coverage of the sky leads to an underestimation
of the angular power of the dipole perpendicular to the axis of
rotation of the Earth. The pseudo-moments of the projected
dipole, a11 and a1−1, are corrected by a geometric factor
introduced by Ahlers et al. (2016) in order to estimate the true
moments a11ˆ and a1 1-ˆ . Furthermore, there is a degeneracy
between different ℓ pseudo-modes under partial sky coverage
that primarily affects the multipolar components ℓ=2, ℓ=3,
and to a lesser degree, ℓ=4, as has been previously studied by
Sommers (2001). This effect is evident in Figure 9, which
corresponds to a dipole injected horizontally in the direction
δ6h. The partial coverage of the sky produces an artificial

Figure 5. (A) Relative intensity Id a (Equation (2)) after subtracting the
multipole fit from the large-scale map and (B) corresponding signed statistical
significance Si (Equation (3)) of the deviation from the average intensity in
J2000 equatorial coordinates.

Figure 6. Reconstructed dipole component amplitude and phase from this
measurement along previously published TeV–PeV results from other
experiments (adopted from Ahlers & Mertsch 2017). The results shown are
from Abeysekara et al. (2018b), Chiavassa et al. (2015), Alekseenko et al.
(2009), Aglietta et al. (2009), Ambrosio et al. (2003), Guillian et al. (2007),
Abdo et al. (2009), Bartoli et al. (2015), Amenomori et al. (2005), and Aartsen
et al. (2013, 2016).
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Abeysekara+2019



CR	propagation	in	the	Milky	Way

image	credit:	Jasson &	Farrar	(2012)

Galactic	magnetic	field
Star	formation
CR	acceleration	by	SNR



CR	propagation	in	the	Milky	Way

image	credit:	Jasson &	Farrar	(2012)

Sun

Galactic	magnetic	field
Star	formation
CR	acceleration	by	SNR
Diffusion-like	propagation
Escape,	emission,	etc



The	FIR	– Radio	relation	hints	a	universal	process

Herschel-ATLAS+2010

Proportional	to	SFR



How	to	model	CRs	in	the	galaxies?



It	is	an	extreme	multi-scale	problem

Goal	-- develop	a	fluid	theory	for	a	collisionless,	
non-Maxwellian	component!	

Cosmic rays in galaxies
AGN feedback

Cosmic ray transport
Global galaxy models

Cosmic ray feedback: an extreme multi-scale problem

Milky Way-like galaxy:

rgal ⇠ 104 pc

gyro-orbit of GeV cosmic ray:

rcr =
p?

e BµG
⇠ 10�6 pc ⇠ 1

4
AU

) need to develop a fluid theory for a collisionless,

non-Maxwellian component!

Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2018)

Christoph Pfrommer Cosmic rays in galaxy formationCourtesy	of	C.	Pfrommer



Lecture	1	(today):
Modeling	CRs	in	Galaxies	and	Clusters

• Properties	of	CRs	in	the	Milky	Way	Galaxy
• How	to	model	CRs	in	galaxy	simulations
• Collisionless	interactions	between	CRs	and	thermal	gas
• Equations	for	classical	CR	hydrodynamics
• Equations	for	generalized	CR	hydrodynamics

• Numerical	approaches
• Current	status	and	open	questions



CRs	interact	collisionlessly	with	the	thermal	
gas	through	gyro-scale	plasma	waves,	
exchanging	momentum	and	energy



Gyro-resonance	scattering
Pitch	angle:
Gyro	frequency:

Resonance	condition:

=>	Scattering	rate	or	rate	of	diffusion	in	µ:

𝜇 = cos 𝜗
𝜔A =
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𝛾𝑚𝑐

Systematic	non-zero
Lorentz	force
F	=	v	x	B

𝜔 − 𝑘𝑣𝜇 = ±𝜔A

Gyroresonant Scattering

Orbits$follow
fieldlines and
short wavelength
fluctuations average
out.

Gyroreso
nant 
fluctuati
ons 
(Doppler 
shifted 
frequenc
y kvparallel 
= ωcr) 
scatter in 
pitch 
angle 
cos-1 µ.

resonant$

nonresonant$

J.$EvereB$

0 5 10 15 20

!5

0

5

𝜈 =
(∆𝜇)L

∆𝑡 ~
𝜋
2 𝜔A 1 − 𝜇

L (
𝛿𝐵
𝐵 )

L



Gyro-resonance	amplification	of	Alfven	waves	

• Streaming	instability	(Wentzel	1968,	Kulsrud &	Pearce	1969):
Anisotropy	=>	wave	growth	=>	enhanced	scattering

• Marginal	stability:	vD ~	vA

B

vD >	vAWave	growth	rate

(Alfvenic streaming)



When	waves	are	damped
vDamping	mechanisms
-- ion-neutral	friction	(HI,	H2)
-- nonlinear	Landau	damping	(hot	gas)
-- turbulent	damping	

vDamping	rate	=	growth	rate	=>	vD,	n,	dB/B

vTransport	speed	could	be	super-Alfvenic:	 vD >	vA

Refs:	Thomas	&	Pfrommer (2018)	for	a	recent	summary	of	damping	mechanisms
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lose energy due to this acceleration, while the ions gain this
as kinetic energy. However, this force can be cancelled by
friction between both particle species. In the end, the en-
ergy lost by waves is thermalized and heats both ions and
neutrals.

We here account for the friction between ions (i), neutral
hydrogen (H) and neutral helium (He). The damping rate
for this three-component fluid was derived by Soler et al.
(2016), whom we closely follow here. First, we consider the
definition of the friction coe�cient for collisions between ions
and neutrals with small relative drift velocities:

↵��0 = n� n�0 m��0 ���0
4
3

s
8kbT
⇡m��0

, (70)

where �, �0 2 {i,H,He}, m��0 = m� m�0/(m� + m�0) is the re-
duced mass of either two species, n� and m� are the number
density and mass of species �, T and kB are temperature
and Boltzmann’s constant, respectively. We implicitly as-
sume that all plasma components share the same tempera-
ture. The momentum-transfer cross sections of interest are
�iH = 10�18 m�2 and �iHe = 3 ⇥ 10�19 m�2. The resulting
damping rate is given by

�in =
1
2

✓
↵iH
⇢i
+
↵iHe
⇢i

◆
, (71)

where we neglect terms, which are second order in the colli-
sion frequencies ↵��0/⇢i and ⇢i is the mass density of ions.

Since �in is independent of wave number, we conclude
that the total loss term of Alfvén waves by ion-neutral damp-
ing is given by

Sin,± = �in "a,±. (72)

5.4 Non-linear Landau damping

The thermal gas can be directly heated via another mech-
anism. Consider two waves 1 and 2 with wave numbers ki
and wave frequencies !i (i 2 {1, 2}) that interact to form a
beat wave, which propagates at the group velocity

3beat =
!1 � !2
k1 � k2

. (73)

Associated with this beat wave is a second-order electric
field, which accelerates thermal particles travelling at simi-
lar velocities. More formally, the two waves 1 and 2 interact
through their beat wave at the Landau resonance with par-
ticles around the thermal speed 3th:

3beat � 3th = 0. (74)

In a linear perturbation analysis, Lee & Völk (1973) calcu-
lated the resulting damping of waves in a general setting. In
a high-� plasma (�plasma = 3

2
th/32a ), where thermal electrons

and protons share the same temperature, the non-linear Lan-
dau (nll) damping rate can be approximated by (Völk &
McKenzie 1981; Miller 1991)

�nll,±(k) =
p
⇡

8
3th
"B

k
π k

0
dk 0 E±(k 0). (75)

While this damping rate strictly only applies to waves of
the same propagation direction, there can also be non-linear
Landau damping between counter-propagating waves. How-
ever, this e↵ect is smaller by an order of magnitude for high-
� plasmas compared to the case of non-linear Landau of

co-propagating waves (Miller 1991), hence we neglected this
case here.

We can introduce a suitably averaged wave number hki
(as in McKenzie & Bond 1983) so that the hydrodynamic
version of equation (75) can be written as:

Snll,± = ↵"2a,±, (76)

where the interaction coe�cient is given by

↵ =

p
⇡

8
3th
"B

hki, (77)

with an averaged wave number (Völk & McKenzie 1981):

hki = 1
"2a,±

π 1

0
dk kE±(k)

π k

0
dk 0 E±(k 0), (78)

which, to order of magnitude, corresponds to the resonant
wave number of CRs. Please note that our particular choice
of the algebraic form of E±(k) / k�2 formally gives raise to
an ultra-violet divergence (k ! 1) of wave energy loss by
virtue of equations (75) and (67). We remind the reader that
this profile was an appropriate choice for intermediate wave
numbers (k ⇠ c/⌦), where the turbulence is driven by the
bulk of CRs. At larger wave numbers, i.e., in the inertial
range and in the dissipation regime of the CR-driven tur-
bulence, this spectrum is not applicable and would have to
be modified to account for turbulent cascading and dissipa-
tion. This modification also cures the apparent ultra-violet
divergence of the integral.

5.5 Turbulent and linear Landau damping

Magnetic turbulence becomes anisotropic through the elon-
gation of wave packets along the mean magnetic field on
scales much smaller than the injection scale (Goldreich &
Sridhar 1995). Two interacting wave packets shear each
other and cause field line wandering. As the two counter-
propagating wave packets follow the perturbed field lines
of their corresponding collision partner, they are distorted
transverse to the mean magnetic field (Lithwick & Goldre-
ich 2001). This process operates at the eddy turnover time
and results in a cascade of energy to higher wave numbers
k k (Farmer & Goldreich 2004).

It also acts as a damping process because it removes
energy from scales where it was injected. The damping rate
is minimized at the largest scale where waves are driven
that obey the gyroresonance condition �k,max ⇠ k�1

k,min ⇠ rL,

and can be estimated as (Farmer & Goldreich 2004; Zweibel
2013):

�turb ⇡ 3ak k,min

s
kmhd,turb

k k,min
, (79)

where kmhd,turb is the wave number at which the large scale
MHD turbulence is driven.

A related process is linear Landau damping of oblique
waves (Zweibel 2017). Here the electric field of a single wave
can interact with the gas through the Landau resonance.
Since Alfvén waves constantly change their propagation an-
gle relative to the mean magnetic field, this e↵ect is directly
linked to large-scale magnetic turbulence and the anisotropic

MNRAS 000, 1–24 (2018)
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MNRAS 000, 1–24 (2018)



streaming	inhibited	
(by	perturbations)

fast	streaming	
(perturbations	smoothed	out)

When	waves	are	damped
vD >	vAvD ~	vA



Fokker-Planck	(F-P)	equation (Skilling	1975)

Describes	back	reaction	of	waves	(subscript	1)	on	
zero-order	CR	distribution	function	f0:

Fokker$–$Planck$(F>P)$EquaSon$
$Back$reacSon$of$waves$(subscript$1)$on$zero$order$cosmic$
ray$distribuSon$funcSon$f0$

Pitch$angle$scaBering$(Dµµ)$dominates:$$

Dpµ$=$Dµp$are$order$(vA/c)$ Dpp$is$order$(vA/c)
2$,$

requires$waves$traveling$in$
both$direcSons$

ScaBering$frequency$$$$$$$ν$~$ωc(δB/B)2$$

Small angle 
Scattering by 
 nearly 
periodic 
randomly 
phased waves 

(averaged	over	wave	
periods	and	phases)

𝐷SS =
𝜈(1 − 𝜇L)

2 Pitch-angle	scattering	dominates	=>	spatial	diffusion	

𝐷S+ = 𝐷+S are	order	(vA/c)

𝐷++ is	order	(vA/c)2 =>	leads	to	2nd-order	Fermi	acceleration	
when	waves	travel	in	both	directions



By	a	little	algebra…
(see	Zweibel 2017	for	a	review)

ÞMaking	the	frequent	scattering	approximation
Þ Assume	v/c~1
Þ Dropping	higher-order	terms	in	vA/c
Þ Averaging	over	pitch	angles
ÞMultiply	by	momentum	and	energy	and	integrate	
over	momentum	space



Classical	CR	hydrodynamics
(Self-confinement	model:	assumes	CRs	scatter	on	self-excited	waves)

Momemtum transfer	via	pressure	gradient

HCR = −vA ⋅∇PCR

T(U𝒖)
T-

=	[…]	-∇PCR

T3WX
T-

+ 𝛻 · 𝑒\]𝒗 = −𝑃\]𝛻 · 𝒗 − 𝛻 · 𝑭 + 𝛻 · (𝜿 · 𝛻𝑒\]) −𝐻\]

vs = �sgn(b̂ ·reCR)vA (1)

1

CRs	stream	down	pressure	gradient	with	vA:

Streaming	and	diffusion Heating	via	waves
vs = �sgn(b̂ ·reCR)vA (1)

F = (eCR + Pcr)vA, k ⇠ v2/⌫ (2)

1

Refs:	Wentzel	1974,	Drury	&	Volk	1981,	Breitschwerdt+1991

Advection Adiabatic



CR	energy	losses	due	to	collisions	and	radiation
CRp:
-- ionization
-- Coulomb
-- Hadronic
CRe:
-- ionization
-- Coulomb
-- bremsstrahlung
-- inverse	Compton
-- Synchrotron

Heating	of	thermal	gas

Other	processes	that	need	to	be	included

x	~1/6

Refs:	Yoast-Hull+2012



For	balanced	turbulence,	f=0
-- CRs	advect with	gas,	no	wave	heating
-- Diffusion from	B	wandering	or	unresolved	B

vs = �sgn(b̂ ·reCR)vA (1)

vD = fvA,where f > 1 (2)

vD =

✓
⌫+ � ⌫�
⌫+ + ⌫�

◆
vA ⌘ fvA,where f < 1 (3)

F = (eCR + Pcr)vA, k ⇠ v2/⌫ (4)

1

vs = �sgn(b̂ ·reCR)vA (1)

vD = fvA,where f > 1 (2)

vD =

✓
⌫+ � ⌫�
⌫+ + ⌫�

◆
vA ⌘ fvA,where f < 1 (3)

F = (eCR + Pcr)vA, k ⇠ v2/⌫ (4)

HCR = �fvA ·rPCR (5)

1

Generalized	CR	hydrodynamics
(Extrinsic	turbulence	model:	assumes	CRs	scatter	on	waves	
as	part	of	turbulent	cascade)

Refs:	Zweibel (2017)



Self	confinement	or	extrinsic	turbulence?

• On	the	scale	of	particle	gyroradii,	whether	CR-induced	
turbulence	(WCR) or	externally	injected	turbulence	
(Wext)	is	dominant?
• WCR:	Growth	rate	=	Damping	rate
• Wext:	Assume	Kolmogorov	turbulence

• Wext(ltr)	=	Wext(ltr)	
=>	ltr ~	1015 cm,	Etr ~	230	GeV
• For	CRs	with	E	<	Etr,	confined	by	self-excited	waves
For	CRs	with	E	>	Etr,	confined	by	external	turbulence

Refs:	Amato	&	Blasi (2018)



Self	confinement	or	extrinsic	turbulence?

Aloisio+2015

This	change	in	spectral	shape	could	be	due	to	Etr



Numerical	approaches
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Figure 4. Mass weighted magnetic field strength over time,
hBimw. The initially weak field is amplified to about 0.1 � 0.3µG
after ⇠ 20 Myr. In simulation CR-smlK-peakSN the field is about
one order of magnitude weaker than in the other runs.

strengths in our simulations are clearly below the observed
ones of a few µG in the galactic plane (e.g. Beck 2009).
We mainly attribute this to the insu�cient resolution for
driving a small-scale dynamo and the missing shear due to
di↵erential rotation, but see also the discussion in Sec. 6.
Finally, we are also missing the large scale magnetic field
of the galaxy. In all cases the field is dominated by small-
scale structures. We refrain from doing a detailed analysis of
the field geometry here but illustrate the morphology below
when describing the vertical structure.

4 VERTICAL STRUCTURE AND VERTICAL
MOTIONS

For our further discussion we focus on three vertical zones of
the computational box, which are related to di↵erent domi-
nating physical processes. Fig. 5 illustrates these zones. The
left panel shows the projected gas density of one of the CR
simulations at t = 100 Myr. The middle panel shows the po-
sitions of all SNe up to t = 100 Myr. In the right panel we
plot the ratio of thermal to CR pressure, averaged along the
y-direction. The disc is considered to be the volume with
|z |  100 pc. The region between 0.1 < |z |/kpc  1 is called
lower halo in the following. The cut at 1 kpc marks the limit
of the direct SN injection regions. The upper halo marks the
region between 1 and 2.5 kpc height above the midplane. For
our analysis we limit the height to a maximum of 2.5 kpc
because most of the volume a larger altitudes is not a↵ected
by outflowing gas over the time scale of 150 Myr.

4.1 Vertical gas distribution

An overview of the vertical distribution is depicted in Fig. 6
for simulation CR-medK at 100 Myr. The top panels are the
edge-on views of the box, the lower panels are the corre-
sponding face-on plots. The left panel shows the integrated
density, all other panels represent infinitesimal slices through
the center of the box. Shown are the density, the gas tem-
perature, the CR pressure, the gas pressure, the ratio of CR
to gas pressure as well as the magnetic field strength. The
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3D	transport	models 3D	HD/MHD	simulations

“Leaky	box”	or	“flat	halo	diffusion”	models:
-- Assume	free	escape	of	CRs	at	z>|H|
-- Sophisticated	treatments	for	CR	composition
-- Milky	Way’s	radiation	field	and	B	field
-- Constant	CR	diffusion	coefficient91

GALPROP	(Strong	&	Moskalenko	98)
DRAGON	(Evoli+08)
PICARD	(Kissmann 14)
Usine (Maurin+01)

Image source: http://www.issibern.ch

Cosmic ray driven outflows 3

is parallel to x−y plane of the coordinate system. We impose
outflow boundary conditions for the gas component at all do-
main boundaries. Fixed boundary conditions (eCR = 0) on
external domain boundaries are assumed for the CR compo-
nent.

3. SIMULATIONS
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FIG. 1.—Vertical (left column) and horizontal slices (right column) through
the disk volume. Upper panels: Logarithm of gas density and velocity vec-
tors at t = 600Myr. Dense gas blobs hosting star formation regions are
apparent at the horizontal slice through the disk. Lower panels: Logarithm
of CR energy density. The high concentration of CRs at the horizontal plane
coincides with the star forming clouds.

Initially the gaseous disk collects gas at the presumed
global infall rate Ṁin until it becomes locally gravitationally
unstable. Supernovae start to explode and deposit CRs in the
ISM after the gas density exceeds the critical value. After
about t ≃ 300Myr the disk reaches an equilibrium state with
a star formation rate at a level of SFR ≃ 40M⊙Myr−1. A
typical snapshot of the system after 600Myr of evolution is
shown in Fig. 1. Most of the supernovae activity is confined
to isolated regions in kpc-sized dense gas clouds (upper right
panel). These regions can be also identified as spots of high
CR energy density apparent as dark brown and black patches
in the face-on map (lower right panel of Fig. 1). One can
identify about 10 − 12 discrete star formation regions with
CR energy densities exceeding ≃ 100 eVcm−3 dropping to
1 eVcm−3 at larger distances away from the disk (lower pan-
els of Fig. 1). The distribution of the CR energy density in
the galactic halo is highly non-uniform. Sharp edges of CR-
populated regions can be identified with similar structures in
the maps of vertical mass flux and vertical magnetic field
component shown in Fig. 2.
The vertical streams of rarefied gas visible in gas density

distribution (upper panels of Figs. 1 and 2) are accelerated, by
CRs, to high velocities (several 103 km s−1). The streams can
extend several tens of kpc above and below the disk plane and
significant fraction of the outflowing gas has velocities above
escape velocity and will be able to leave the galaxy altogether.
Maps of the mass flux fz = ρvz (mid panels of Fig. 2)

show the bimodal nature of the outflow perpendicular to
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FIG. 2.— Vertical (left column) and horizontal (right column) maps at dif-
ferent vertical heights of wind related quantities. Upper panels: Vertical
component of the velocity. Narrow streams of high velocity rarefied gas ex-
tend several 10 kpc above and below the disk. The relation of high velocity
streams to the underlying star formation regions is apparent. Middle panels:
Vertical mass flux fz = ρvz . Regions of high mass flux coincide with the
highest concentration of CRs shown in Fig. 1. Bottom panels: Magnitude
of magnetic field B. Vertical filaments of ∼ 1µG magnetic field extend to
vertical distances of several tens of kpc from the galactic plane.
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FIG. 3.— Horizontally integrated mass flux vs. vertical coordinate z. Solid
lines denotes flux of gas moving in positive z-direction, and dashed lines
denotes gas moving in negative z-direction.

the disk plane with peak values up to 0.2M⊙ yr−1 kpc−2

(the color scale of the mass flux panels is saturated at only
0.02M⊙ yr−1 kpc−2 to show the wind structure far from the
disk plane).
Streams of gas emanating from a single star forming re-

gion have a large cross-section, visible at the horizontal slice
of ρvz at z = 2kpc. Individual SF regions generate out-
flows of 5M⊙/ yr on average and form streams of about

Isolated	galaxies:
Uhlig+12,	Booth+13,	Salem+14,	
Simpson+16,	Ruszkowski+17,	
Wiener+17,	Pfrommer+17,	Jacob+18…
Cosmological	simulations:
Jubelgas+08,	Wadepuhl+11,	Salem+14,	
16,	Liang+16,	Chan+18,	Buck+19,	Ji+19,		
Hopkins+20ab…

Hanasz+13

Diso ~	3x1028 cm2/s



Advection	&	
Constant	CR	

diffusion	coefficient

CR	streaming

Spatially	dependent	
CR	transport	

Energy	dependent	
CR	transport

∆𝑡 ∝ (∆𝑥)L

∆𝑡 ∝ (∆𝑥)e
Regularization	(Sharma+09)
Two-moment	method	(Jiang	&	Oh	18,	Hopkins+20)
Wave	equations	(Thomas	&	Pfrommer 18)



Current	status	and	open	questions



Putting	everything	we	know	into	the	simulation…
• FIRE:	3D	MHD	cosmological	galaxy	simulations
• Testing	all	possible	choices	of	different	CR	transport	physics
• Observational	constraints:	Lg,	grammage,	residence	time,	CR	energy	densities

Refs:	Hopkins+2020,	astro-ph://2002.06211
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Figure 1. Images of one of our simulated galaxies (m11f) at present-day (z = 0), in a mid-plane slice with box ⇠ 60kpc on a side (see scale-bar), viewed
face-on. We show the self-confinement (SC)-motived model “ fQLT-100.” Top left: Phase map showing cold neutral (magenta, T . 8000K), warm ionized
(green; 104 . T . 105 K) and hot ionized (T & 105 K) gas. Top center: Gas density n. Top right: CR energy density ecr. Bottom left: Ideal MHD Alfvén speed
vA. Bottom center: Alfvén Mach number MA. Bottom right: Effective diffusivity ̄eff ⌘ |F|/|rkecr|, where F is the local CR flux. Multi-phase structure
with large fluctuations in turbulent dissipation rates and vA are evident on scales ⌧ kpc, while galactic outflows give rise to large MA in the CGM and in
“superbubbles” within the disk. These give rise to orders-of-magnitude fluctuations in ̄eff on small-scales, though ̄eff generally rises outside the galactic disk.
The CR energy ecr is smoother, following a radial gradient to first order (as expected), though with a notable “hot spots” surrounding clustered SNe.

k̂ ⇡ b̂ are undamped. Using their assumptions (see Appendix C),
�damp is then set by the maximum of either collisionless (Lan-
dau) or viscous damping: when collisionless dominates we can
approximate fturb ⇠ 2(⇡me �/4mp)

1/2 ⇠ 0.04�1/2, and when vis-
cous dominates we have fturb ⇠ M5/3

A Re�1/3 (`turb/rL)
1/6, where

Re ⌘ (MA vA `turb)/⌫v is the Reynolds number with ⌫v the kine-
matic viscosity.6 However, even given these assumptions, efficient
confinement by fast modes requires near fully-ionized gas ( fneutral ⌧
fn,0 ⇡ 0.001(n1 �)

�3/4 T 1/4
4 (`turb,kpc �L)

�1/2) and low � < 1, other-
wise damping of the gyro-resonant fast modes gives extremely large
.7 We approximate these “cutoffs” by multiplying fturb by a factor
fcut = exp{( fneutral/ fn,0)

4 +(�/0.1)1.5} (see Appendix C).
(iv) Fast-Max: If we make the ad-hoc assumption that some

other physics contributes large scattering rates at small pitch angles,
or simply neglect any damping of gyro-resonant parallel fast modes,
then we approximately obtain the “Fast-YL04” model but without

6 We take ⌫v ⇠ 1018 cm2 s�1 T 1/2
4 ⇢�1

�24 (0.6 fion T 2
4 +300 fneutral) to be the

sum of Braginskii (dominant in ionized gas) and atomic collisional (dom-
inant in neutral gas) viscosities (Spitzer & Härm 1953). To interpolate be-
tween collisionless/viscous regimes we simply take the maximum fturb de-
fined by either.
7 See e.g. Yan & Lazarian 2004 who show that any models with � � 1,
such as their “hot ionized medium” (HIM) model, or with non-negligible
neutrals, such as their warm neutral (WNM) or cold cloud (CNM or DC)
models, give k � 1033 cm2 s�1.

the “cutoff” terms suppressing scattering where fneutral & 10�3 or
� & 1. We consider this model ( fcut = 1) for the sake of reference,
if the fast-mode scattering rates for well-ionized, low-� gas were
simply applied everywhere in the ISM.

(v) Fast-Mod: Yan & Lazarian (2004, 2008) make a number of
uncertain assumptions in deriving the effect of fast modes. For ex-
ample, they assume a fast-mode spectrum / k�3/2, but the simula-
tions in Cho & Lazarian (2003) used to justify this choice are in sev-
eral cases more consistent with Kolmogorov (1941) (K41; k�5/3) or
even Burgers (1973) (B73; k�2) spectra (as others have argued for
fast modes in the ISM, e.g. Boldyrev et al. 2002; Schmidt et al.
2008; Kritsuk et al. 2007; Pan et al. 2009; Burkhart et al. 2009;
Hopkins 2013), the latter of which would give fturb ⇠ 1. They also
assume the non-linear TTD terms are “broadened“ with the maxi-
mum possible broadening (given by the driving-scale �B/|B|, de-
spite rL ⌧ �damp ⌧ `turb); modifying this would increase fturb by
a large (exponential) factor (Voelk 1975). Lacking a more detailed
model, we consider a case with fturb equal to the “Fast-Max” model
times 1000.

(vi) Iso-K41: If we entirely ignore anisotropy and damping, and
extrapolate an isotropic Kolmogorov (1941) spectrum from `turb to
rL, we obtain fturb ⇠ (rL/`turb)

1/3 ⇠ 0.001(�L/BµG `turb,kpc)
1/3. This

model is not physically motivated, since the anisotropy of magne-
tized turbulence is well understood and observed in the solar wind
(Chen 2016), but it provides a useful reference.
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vA. Bottom center: Alfvén Mach number MA. Bottom right: Effective diffusivity ̄eff ⌘ |F|/|rkecr|, where F is the local CR flux. Multi-phase structure
with large fluctuations in turbulent dissipation rates and vA are evident on scales ⌧ kpc, while galactic outflows give rise to large MA in the CGM and in
“superbubbles” within the disk. These give rise to orders-of-magnitude fluctuations in ̄eff on small-scales, though ̄eff generally rises outside the galactic disk.
The CR energy ecr is smoother, following a radial gradient to first order (as expected), though with a notable “hot spots” surrounding clustered SNe.

k̂ ⇡ b̂ are undamped. Using their assumptions (see Appendix C),
�damp is then set by the maximum of either collisionless (Lan-
dau) or viscous damping: when collisionless dominates we can
approximate fturb ⇠ 2(⇡me �/4mp)

1/2 ⇠ 0.04�1/2, and when vis-
cous dominates we have fturb ⇠ M5/3

A Re�1/3 (`turb/rL)
1/6, where

Re ⌘ (MA vA `turb)/⌫v is the Reynolds number with ⌫v the kine-
matic viscosity.6 However, even given these assumptions, efficient
confinement by fast modes requires near fully-ionized gas ( fneutral ⌧
fn,0 ⇡ 0.001(n1 �)

�3/4 T 1/4
4 (`turb,kpc �L)

�1/2) and low � < 1, other-
wise damping of the gyro-resonant fast modes gives extremely large
.7 We approximate these “cutoffs” by multiplying fturb by a factor
fcut = exp{( fneutral/ fn,0)

4 +(�/0.1)1.5} (see Appendix C).
(iv) Fast-Max: If we make the ad-hoc assumption that some

other physics contributes large scattering rates at small pitch angles,
or simply neglect any damping of gyro-resonant parallel fast modes,
then we approximately obtain the “Fast-YL04” model but without

6 We take ⌫v ⇠ 1018 cm2 s�1 T 1/2
4 ⇢�1

�24 (0.6 fion T 2
4 +300 fneutral) to be the

sum of Braginskii (dominant in ionized gas) and atomic collisional (dom-
inant in neutral gas) viscosities (Spitzer & Härm 1953). To interpolate be-
tween collisionless/viscous regimes we simply take the maximum fturb de-
fined by either.
7 See e.g. Yan & Lazarian 2004 who show that any models with � � 1,
such as their “hot ionized medium” (HIM) model, or with non-negligible
neutrals, such as their warm neutral (WNM) or cold cloud (CNM or DC)
models, give k � 1033 cm2 s�1.

the “cutoff” terms suppressing scattering where fneutral & 10�3 or
� & 1. We consider this model ( fcut = 1) for the sake of reference,
if the fast-mode scattering rates for well-ionized, low-� gas were
simply applied everywhere in the ISM.

(v) Fast-Mod: Yan & Lazarian (2004, 2008) make a number of
uncertain assumptions in deriving the effect of fast modes. For ex-
ample, they assume a fast-mode spectrum / k�3/2, but the simula-
tions in Cho & Lazarian (2003) used to justify this choice are in sev-
eral cases more consistent with Kolmogorov (1941) (K41; k�5/3) or
even Burgers (1973) (B73; k�2) spectra (as others have argued for
fast modes in the ISM, e.g. Boldyrev et al. 2002; Schmidt et al.
2008; Kritsuk et al. 2007; Pan et al. 2009; Burkhart et al. 2009;
Hopkins 2013), the latter of which would give fturb ⇠ 1. They also
assume the non-linear TTD terms are “broadened“ with the maxi-
mum possible broadening (given by the driving-scale �B/|B|, de-
spite rL ⌧ �damp ⌧ `turb); modifying this would increase fturb by
a large (exponential) factor (Voelk 1975). Lacking a more detailed
model, we consider a case with fturb equal to the “Fast-Max” model
times 1000.

(vi) Iso-K41: If we entirely ignore anisotropy and damping, and
extrapolate an isotropic Kolmogorov (1941) spectrum from `turb to
rL, we obtain fturb ⇠ (rL/`turb)

1/3 ⇠ 0.001(�L/BµG `turb,kpc)
1/3. This

model is not physically motivated, since the anisotropy of magne-
tized turbulence is well understood and observed in the solar wind
(Chen 2016), but it provides a useful reference.
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Table 1. Subset of CR transport models studied. All models include star formation, stellar feedback, MHD, anisotropic conduction and
viscosity.

Name Description Ref. hiso
eff i⌫29 L� , Xs? hecri

CD: Constant-Diffusivity Models (§ 3.1; Eq. 3): k = 29 1029 cm2 s�1, varied vst ⇠ vA

29 = 0 29 = 0, vst = (0, 1, 3, 4, 1+�1/2, 3[1+�1/2])vA (§ 3.1.2) a .0.01 ⇥ (high) 40
29 = 0.03 29 = 0.03, vst = (1,3)vA a 0.015 ⇥ (high) 50
29 = 0.3 29 = 0.3, vst = (0,1,3)vA a 0.1 ⇥ (high) 8
29 = 3 29 = 3, vst = (0,1,3)vA (favored models in Papers I & II) a 1 X 1
29 = 30 29 = 30, vst = vA a 10 X 0.4
29 = 300 29 = 300, vst = vA a 100 � (low) 0.04
ion�neutral 29 = 3 in neutral gas, = 0.1 in ionized gas (§ 3.1.1; Eq. 4) b 0.05 ⇥ (high) 20

ET: Extrinsic Turbulence Models (§ 3.2, Eq. 5): k =M�2
A c`turb fturb, varied fturb

Alfvén-C00 fturb = 0.14(cs/vA)/ ln(`turb/rL): anisotropic GS95 spectrum of Alfvén modes c 1500 � (low) 0.2
Alfvén-C00-Vs as Alfvén-C00, adding additional “streaming” vst = vA or vion

A – 1500 � (low) 0.2
Alfvén-YL02 fturb = 70(c/vA)5/11 (`turb/rL)9/11: modified non-resonant Alfvén scattering d >104 � (low) 0.001

Alfvén-Hi fturb = 1000: arbitrarily changed fturb – 400 � (low) 0.02
Alfvén-Max fturb = 1: GS95 Alfvén scattering ignoring gyro-averaging/anisotropy – 1 X 2

Fast-YL04 fturb = f (�damp): non-resonant fast-modes, damped below �damp e 80 � (low) 0.006
Fast-Max as YL04, neglect ion-neutral and � > 1 viscous damping e 6 X 1
Fast-Mod fturb ⇠ 1000⇥ the “Fast-Max” value (different spectrum, broadening) – 700 � (low) 0.04

Fast-NoDamp fturb = (rL/`turb)1/2: Fast-YL04, ignoring any fast-mode damping – 0.003 ⇥ (high) 3
Fast-NoCDamp fturb given by Fast-Max with viscous damping only – 0.03 ⇥ (high) 5

Iso-K41 fturb = (rL/`turb)1/3: isotropic, undamped K41 cascade down to < rL f 0.004 ⇥ (high) 0.4
Fast-Max+Vs as Fast-YL04, adding additional “streaming” vst = vA or vion

A – 7 X 1
SC: Self-Confinement Models (§ 3.3, Eq. 6): k / � (damping), vst = vion

A , varied �

Default default scalings for �= �in +�turb +�LL +�NLL, Appendix A – 0.02 ⇥ (high) 10
Non-Eqm replace k, vst with evolved gyro-resonant �B[rL] (§ 3.3.2) – 0.03 ⇥ (high) 4

10GeV adopt �L = 10 instead of = 1 (typical Ecr/Z ⇠ 10GeV; § 3.3.3) – 0.03 ⇥ (high) 15
videal

A adopt vA = videal
A instead of vion

A in Eq. 6 (§ 3.3.1) – 0.007 ⇥ (high) 15
fQLT-6 multiply k in Eq. 6 by fQLT (weaker growth or stronger damping; § 3.3.4) – 0.05 ⇥ (high) 10

fQLT-6, 10 GeV combines “ fQLT-6” and “10 GeV” models – 0.1 ⇥ (high) 8
fQLT-6, videal

A combines “ fQLT-6” and “videal
A ” models – 0.04 ⇥ (high) 10

fQLT-100 multiply k in Eq. 6 by fQLT = 100 – 5 X 0.3
fcas-5 fcas = 5 in �turb & �LL – 0.06 ⇥ (high) 8

fcas-50 fcas = 50 in �turb & �LL – 2 X 0.3
fcas-500 fcas = 500 – 10 X 0.4
fcas-DA fcas = (`turb/rL)1/10, for a “dynamically aligned” perpendicular spectrum (⇠ k�3/2

? ) – 0.02 ⇥ (high) 10
fcas-B73 fcas = MIN(1,M�1/2

A ), for a B73 spectrum above `A – 0.005 ⇥ (high) 20
fcas-L16 fcas follows a multi-component cascade model from L16 g 0.004 ⇥ (high) 15
fcas-K41 fcas =M�1/2

A (`turb/rL)1/6 for an isotropic, undamped K41 cascade – 15 X 0.3
NE, fcas-L16 as “Non-Eqm” but with fcas following fcas-L16 model – 0.01 ⇥ (high) 4

NE, fQLT-100 as “Non-Eqm” but with fQLT = 100 – 7 X 0.3
ET+SC: Combined Extrinsic-Turbulence & Self-Confinement (§ 3.4): ⌫total =

P
⌫i (sum ET+SC terms), vst = vion

A
A+F+SC100 ET:Alfvén-C00 + ET:Fast-Max + SC: fturb = 100 – 2 X 1

A+SC100 ET:Alfvén-C00 + SC: fturb = 100 – 5 X 0.3
Summary of the different CR transport models (models for the effective transport coefficients k and vst in Eq. 2). Column include: (1) Name. (2)
Description. (3) References where previously studied. (4) hiso

eff i⌫29: time (redshifts z < 0.1, sampled each ⇠ 10Myr) and space (galacto-centric
radii < 10kpc) and angle (isotropic-equivalent) averaged, scattering-rate-weighted effective diffusivity iso

eff ⌘ |Fcr|/|recr| (in units of
1029 cm2 s�1) in our MW-like (m12i) simulations. (5) L� , Xs: qualitative comparison of the predicted �-ray luminosity and MW grammage to
observational constraints, for dwarf (m11i), intermediate (m11f), and MW-mass (m12i) galaxies. A X indicates consistency with observations,
“high” or “low” indicates the prediction is too high or low. (6) hecri, the time-and-space averaged, volume-weighted mean CR energy density (in
eVcm�3) in our MW-like (m12i) simulations at z < 0.1 at approximately the solar position (averaged in the thin disk in a galacto-centric radial
annulus from 7�9 kpc with height ±250pc). Models are grouped by categories (labeled). Models in red produce excessive confinement and are
ruled out by �-ray observations and MW constraints. Models in cyan produce less confinement than observed: these are allowed, but cannot
dominate scattering. Models in black produce reasonable agreement with the observations. References are: a Paper I, b Farber et al. (2018), c
Chandran (2000), d Yan & Lazarian (2002), e Yan & Lazarian (2004, 2008), f Jokipii (1966), g Lazarian (2016). Different turbulent power
spectra include: GS95 (Goldreich & Sridhar 1995), K41 (Kolmogorov 1941), “dynamically aligned” (Boldyrev 2006), B73 (Burgers 1973).

when a toy-model “halo” is added (usually a cylinder of height
Hhalo ⇠ 1�10kpc), the inferred iso increases with ⇠ Hhalo (Strong
& Moskalenko 2001; Vladimirov et al. 2012; Gaggero et al. 2015;
Guo et al. 2016; Jóhannesson et al. 2016; Cummings et al. 2016;
Korsmeier & Cuoco 2016; Evoli et al. 2017; Amato & Blasi 2018),
so this effect alone can increase the “required” diffusivities by fac-
tors of ⇠ 100.

Making matters more complicated, recent work has shown the
properties of the gaseous halo itself can depend strongly on the
⇠GeV CR transport (Butsky & Quinn 2018; Ji et al. 2019). More-
over, in physically-motivated CR transport models, the local diffu-
sivity is typically a strong function of the local plasma properties
(strength of turbulence, magnetic field strength, density, ionization
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Putting	everything	we	know	into	the	simulation…

Refs:	Hopkins+2020,	astro-ph://2002.06211

A	larger	CR	diffusion	coefficient	(3-30)x1029 cm2/s	is	required
(could	be	still	consistent	due	to	anisotropic	transport	and	height	of	leaky	boxes)

Constant	diffusion Extrinsic	turbulence Self	confinement



Putting	everything	we	know	into	the	simulation…

Refs:	Hopkins+2020,	astro-ph://2002.06211

The	standard	self-confinement	model	over-predicts	Lg, 
implying	too	much	confinement	by	a	factor	of	100!!

Constant	diffusion Extrinsic	turbulence Self	confinement



Some	open	questions

• Whether	the	standard	self-confinement	model	is	
consistent	with	observational	constraints?	Are	
significant	modifications	needed?

• How	are	CRs	above	~200-300	GeV	confined?	By	
Alfvenic	turbulence	or	fast	MHD	waves?

• How	are	these	processes	modified	in	high-b 
environments	(i.e.,	galaxy	clusters)?

• How	do	CRs	affect	feedback	from	stars	and	SMBHs?	
(see	Karen’s	lecture	on	1/21)



Summary

• CRs	are	key	agents	in	our	understanding	of	our	Milky-Way	
Galaxy	as	well	as	feedback	processes	in	galaxies	and	clusters

• CRs	exchange	momentum	and	energy	with	thermal	gas	via	
plasma	waves,	which	is	the	core	of	classical/generalized	CR	
hydrodynamics

• CR	physics	in	galaxies	is	complex	and	extreme	multi-scale,	
which	poses	great	challenges	to	our	understanding	of	
plasma	physics	and	galaxy	formation
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