Modeling Cosmic Rays in Galaxies and Clusters

Hsiang-Yi Karen Yang

National Tsing Hua University, Institute of Astronomy

Jan. 18, 2021 Astronomy Winter School: High-energy Astrophysics Hsinchu, Taiwan

Starburst wind feedback in M82

Shull 2009 NOAO/AURA/NSF/WIYN

Fermi bubbles in the Milky Way Galaxy

NASA/DOE/Fermi LAT/Su et al. 2010

AGN feedback in MS0735.6+7421

Chandra/HST/VLA

Energetic feedback in the universe

Cosmic rays (CRs) are crucial!!!

Lecture 1 (today):

Modeling CRs in Galaxies and Clusters

Lecture 2 (1/19 11:30am):

Physical Origin of the Fermi Bubbles

Lecture 3 (1/21 1:30pm):

CR Feedback in Galaxies and Clusters

- Properties of CRs in the Milky Way Galaxy
- How to model CRs in galaxy simulations
 - Collisionless interactions between CRs and thermal gas
 - Equations for classical CR hydrodynamics
 - Equations for generalized CR hydrodynamics
- Numerical approaches
- Current status and open questions

Gamma-ray all-sky map by Fermi

Point sources (blazars/AGNs, pulsars) Extended sources (supernova remnants, galaxies) Diffuse emission (background, Fermi bubbles, Galactic plane)

Credit: NASA/DOE/Fermi LAT Collaboration

Gamma-ray production by CRs

 Hadronic process – inelastic collisions between CRp and thermal nuclei in the ISM

Gamma-ray production by CRs

- Leptonic processes by CRe:
 -- inverse Compton
- -- synchrotron
- -- bremsstrahlung

Gamma-ray all-sky map by Fermi

Point sources (blazars/AGNs, pulsars) Extended sources (supernova remnants, galaxies) Diffuse emission (background, Fermi bubbles, Galactic plane)

Credit: NASA/DOE/Fermi LAT Collaboration

Properties of CRs observed on Earth

✤ Mostly protons ($n_i/n_e \sim 50-100$)
♦ $U_{CR} \sim 1eV \text{ cm}^{-3} \sim U_B \sim U_{rad} \sim U_{th}$ ♠ Require ~10% of mechanical E_{SN} ♦ <E> ~ 3GeV

Composition => CRs are confined

Overabundance of Li, Be, B interpreted as spallation of CNO nuclei

⇒ Grammage ~ 3-5 g/cm² from source to detection

$$X_s \equiv \int_{CR \text{ path}} \rho dl = \int_{CR \text{ path}} \rho c dt$$

 \Rightarrow Residence time ~20 Myr

$$\Delta t_{res} = \int_{CR \ path} dt = X_s / (\langle n \rangle m_p c)$$

lsotropy => CRs are well scattered

Anisotropy of CRs

- Increases with energy
- Amplitude ~ 10⁻³ for TeV CRs

Abeysekara+2019

image credit: Jasson & Farrar (2012)

The FIR – Radio relation hints a universal process

Proportional to SFR

How to model CRs in the galaxies?

It is an extreme multi-scale problem

Milky Way-like galaxy:

 $r_{gal} \sim 10^4 \ {
m pc}$

$$r_{
m cr} = rac{oldsymbol{
ho}_\perp}{e\,B_{\mu
m G}} \sim 10^{-6}~
m pc \sim rac{1}{4}~
m AU$$

Goal -- develop a fluid theory for a collisionless, non-Maxwellian component!

Courtesy of C. Pfrommer

Lecture 1 (today):

Modeling CRs in Galaxies and Clusters

- Properties of CRs in the Milky Way Galaxy
- How to model CRs in galaxy simulations
 - Collisionless interactions between CRs and thermal gas
 - Equations for classical CR hydrodynamics
 - Equations for generalized CR hydrodynamics
- Numerical approaches
- Current status and open questions

CRs interact collisionlessly with the thermal gas through gyro-scale plasma waves, exchanging momentum and energy

Gyro-resonance scattering

Orbits follow fieldlines and short wavelength fluctuations average out.

Gyro-resonance amplification of Alfven waves

Streaming instability (Wentzel 1968, Kulsrud & Pearce 1969):
 Anisotropy => wave growth => enhanced scattering

 Marginal stability: v_D ~ v_A (Alfvenic streaming)

When waves are damped

Damping mechanisms

- -- ion-neutral friction (HI, H₂)
- -- nonlinear Landau damping (hot gas)
- -- turbulent damping

• Damping rate = growth rate => v_D , v, δB_P

*****Transport speed could be *super-Alfvenic:* $v_D > v_A$

Refs: Thomas & Pfrommer (2018) for a recent summary of damping mechanisms

When waves are damped

streaming inhibited
(by perturbations)

fast streaming (perturbations smoothed out)

Fokker-Planck (F-P) equation (Skilling 1975)

Describes back reaction of waves (subscript 1) on zero-order CR distribution function f_0 :

$$\begin{aligned} \frac{df_0}{dt} &= -\left\langle \frac{q}{m} \left(\boldsymbol{E}_1 + \frac{v \times \boldsymbol{B}_1}{c} \right) \cdot \boldsymbol{\nabla}_p f_1 \right\rangle \\ &= \boldsymbol{\nabla}_p \cdot \boldsymbol{D} \cdot \boldsymbol{\nabla}_p f_0. \end{aligned}$$

(averaged over wave periods and phases)

$$D_{\mu\mu} = \frac{\nu(1-\mu^2)}{2}$$

Pitch-angle scattering dominates => spatial diffusion

 $D_{\mu p} = D_{p \mu}$ are order (v_A/c)

 D_{pp} is order $(v_A/c)^2 =>$ leads to 2nd-order Fermi acceleration when waves travel in both directions

By a little algebra...

(see Zweibel 2017 for a review)

- \Rightarrow Making the frequent scattering approximation
- \Rightarrow Assume v/c~1
- \Rightarrow Dropping higher-order terms in v_A/c
- \Rightarrow Averaging over pitch angles
- ⇒ Multiply by momentum and energy and integrate over momentum space

Classical CR hydrodynamics

(Self-confinement model: assumes CRs scatter on self-excited waves)

CRs stream down pressure gradient with v_A : v_s =

$$oldsymbol{v}_s = - \mathrm{sgn}(\hat{oldsymbol{b}} \cdot
abla e_{\mathrm{CR}}) oldsymbol{v}_{\mathrm{A}}$$

$$\frac{\partial(\varrho u)}{\partial t} = [...] - \nabla P_{\rm CR}$$

Momemtum transfer via pressure gradient

$$\begin{array}{ll} \frac{\partial e_{CR}}{\partial t} + \nabla \cdot (e_{CR} \boldsymbol{v}) = -P_{CR} \nabla \cdot \boldsymbol{v} - \nabla \cdot \boldsymbol{F} + \nabla \cdot (\boldsymbol{\kappa} \cdot \nabla e_{CR}) - H_{CR} \\ & \text{Advection} & \text{Adiabatic} & & & & \\ & \text{Streaming and diffusion} & \text{Heating via waves} \\ & \boldsymbol{F} = (e_{CR} + P_{cr}) \boldsymbol{v}_{A}, \ \kappa_{\parallel} \sim v^{2} / \nu & H_{CR} = -v_{A} \cdot \nabla P_{CR} \end{array}$$

Refs: Wentzel 1974, Drury & Volk 1981, Breitschwerdt+1991

Other processes that need to be included

Heating of thermal gas

CR energy losses due to collisions and radiation

x~1/6

CRp:

- -- ionization
- -- Coulomb
- -- Hadronic

CRe:

- -- ionization -
- -- Coulomb
- -- bremsstrahlung
- -- inverse Compton
- -- Synchrotron

Refs: Yoast-Hull+2012

Generalized CR hydrodynamics

(*Extrinsic turbulence model*: assumes CRs scatter on waves as part of turbulent cascade)

$$oldsymbol{v}_{\mathrm{D}} = \left(rac{
u_+ -
u_-}{
u_+ +
u_-}
ight)oldsymbol{v}_{\mathrm{A}} \equiv foldsymbol{v}_{\mathrm{A}}, ext{where } f < 1$$

$$H_{\rm CR} = -f\boldsymbol{v}_{\rm A}\cdot\nabla P_{\rm CR}$$

For balanced turbulence, f=0

- -- CRs advect with gas, no wave heating
- -- *Diffusion* from B wandering or unresolved B

Self confinement or extrinsic turbulence?

- On the scale of particle gyroradii, whether CR-induced turbulence (W_{CR}) or externally injected turbulence (W_{ext}) is dominant?
 - W_{CR}: Growth rate = Damping rate
 - W_{ext}: Assume Kolmogorov turbulence
- $W_{ext}(\lambda_{tr}) = W_{ext}(\lambda_{tr})$
 - => $\lambda_{tr} \simeq 10^{15}$ cm, $E_{tr} \simeq 230$ GeV
- For CRs with $E < E_{tr}$, confined by self-excited waves For CRs with $E > E_{tr}$, confined by external turbulence

Self confinement or extrinsic turbulence?

Aloisio+2015

Numerical approaches

1D flux-tubes

3D galaxy patches

Ipavich 75, Zirakashvili+96, Everett+08, Dorfi+12, Recchia+17, Samui+18, Mao+18, Owen+19...

Girichidis+18 Farber+17 Holguin+18

3D transport models

3D HD/MHD simulations

"Leaky box" or "flat halo diffusion" models:

- -- Assume free escape of CRs at z>|H|
- -- Sophisticated treatments for CR composition
- -- Milky Way's radiation field and B field
- -- Constant CR diffusion coefficient

Current status and open questions

Putting everything we know into the simulation...

- FIRE: 3D MHD cosmological galaxy simulations
- Testing all possible choices of different CR transport physics
- Observational constraints: Lγ, grammage, residence time, CR energy densities

Refs: Hopkins+2020, astro-ph://2002.06211

_	Name	Description	Ref.	$\langle\kappa_{ m eff}^{ m iso} angle_{29}^{ u}$	$L_{\gamma}, X_s?$	$\langle e_{\rm cr} \rangle$	
	CD:	Constant-Diffusivity Models (§ 3.1; Eq. 3) : $\kappa_{\parallel} = \kappa_{29} 10^{29} \text{cm}^2 \text{s}^{-1}$, varied $v_{\text{st}} \sim v_A$					
	$\kappa_{29}=0$	$\kappa_{29} = 0, v_{\text{st}} = (0, 1, 3, 4, 1 + \beta^{1/2}, 3[1 + \beta^{1/2}]) v_A (\S 3.1.2)$	а	$\lesssim 0.01$	\times (high)	40	
Di	$\kappa_{29} = 0.03$	$\kappa_{29} = 0.03, v_{\rm st} = (1,3) v_A$	a	0.015	\times (high)	50	
	$\kappa_{29} = 0.3$	$\kappa_{29} = 0.3, v_{st} = (0, 1, 3) v_A$	a	0.1	\times (high)	8	
	$\kappa_{29} = 3$	$\kappa_{29} = 3$, $v_{st} = (0, 1, 3) v_A$ (favored models in Papers I & II)	а	1	\checkmark	1	
	$\kappa_{29} = 30$	$\kappa_{29} = 30, v_{\rm st} = v_A$	а	10	\checkmark	0.4	
•	$\kappa_{29} = 300$	$\kappa_{29} = 300, v_{\rm st} = v_A$	a	100	∘ (low)	0.04	
	$\kappa_{\rm ion-neutral}$	$\kappa_{29} = 3$ in neutral gas, = 0.1 in ionized gas (§ 3.1.1; Eq. 4)	b	0.05	\times (high)	20	
•	ET: Extrinsic Turbulence Models (§ 3.2, Eq. 5): $\kappa_{\parallel} = \mathcal{M}_A^{-2} c \ell_{\text{turb}} f_{\text{turb}}$, varied f_{turb}						
	Alfvén-C00	$f_{\text{turb}} = 0.14 (c_s/v_A) / \ln(\ell_{\text{turb}}/r_{\text{L}})$: anisotropic GS95 spectrum of Alfvén modes	С	1500	o (low)	0.2	
•	Alfvén-C00-Vs	as Alfvén-C00, adding additional "streaming" $v_{st} = v_A$ or v_A^{ion}	-	1500	o (low)	0.2	
	Alfvén-YL02	$f_{\text{turb}} = 70 (c/v_A)^{5/11} (\ell_{\text{turb}}/r_L)^{9/11}$: modified non-resonant Alfvén scattering	d	>10 ⁴	o (low)	0.001	
	Alfvén-Hi	$f_{\text{turb}} = 1000$: arbitrarily changed f_{turb}	-	400	o (low)	0.02	
	Alfvén-Max	$f_{\text{turb}} = 1$: GS95 Alfvén scattering ignoring gyro-averaging/anisotropy	-	1	\checkmark	2	
	Fast-YL04	$f_{\text{turb}} = f(\lambda_{\text{damp}})$: non-resonant fast-modes, damped below λ_{damp}	е	80	• (low)	0.006	
	Fast-Max	as YL04, neglect ion-neutral and $\beta > 1$ viscous damping	е	6	\checkmark	1	
	Fast-Mod	$f_{\rm turb} \sim 1000 \times$ the "Fast-Max" value (different spectrum, broadening)	—	700	• (low)	0.04	
	Fast-NoDamp	$f_{\text{turb}} = (r_{\text{L}}/\ell_{\text{turb}})^{1/2}$: Fast-YL04, ignoring any fast-mode damping	_	0.003	\times (high)	3	
	Fast-NoCDamp	f_{turb} given by Fast-Max with viscous damping only	_	0.03	\times (high)	5	
	Iso-K41	$f_{\text{turb}} = (r_{\text{L}}/\ell_{\text{turb}})^{1/3}$: isotropic, undamped K41 cascade down to $< r_{\text{L}}$	f	0.004	\times (high)	0.4	
	Fast-Max+Vs	as Fast-YL04, adding additional "streaming" $v_{st} = v_A$ or v_A^{ion}	_	7	\checkmark	1	
	SC:	Self-Confinement Models (§ 3.3, Eq. 6) : $\kappa_{\parallel} \propto \Gamma$ (damping), $v_{st} = v_A^{ion}$, varied Γ					
	Default	default scalings for $\Gamma = \Gamma_{in} + \Gamma_{turb} + \Gamma_{LL} + \Gamma_{NLL}$, Appendix A	_	0.02	\times (high)	10	
	Non-Eqm	replace κ_{\parallel} , v_{st} with evolved gyro-resonant $\delta \mathbf{B}[r_{\rm L}]$ (§ 3.3.2)	-	0.03	\times (high)	4	
	10GeV	adopt $\gamma_{\rm L} = 10$ instead of = 1 (typical $E_{\rm cr}/Z \sim 10 {\rm GeV}$; § 3.3.3)	_	0.03	\times (high)	15	
	v_A^{ideal}	adopt $v_A = v_A^{\text{ideal}}$ instead of v_A^{ion} in Eq. 6 (§ 3.3.1)	_	0.007	\times (high)	15	
	$f_{\rm QLT}$ -6	multiply κ_{\parallel} in Eq. 6 by f_{QLT} (weaker growth or stronger damping; § 3.3.4)	_	0.05	\times (high)	10	
	f _{QLT} -6, 10 GeV	combines "f _{QLT} -6" and "10 GeV" models	_	0.1	\times (high)	8	
	$f_{\rm QLT}$ -6, $v_A^{\rm ideal}$	combines " f_{QLT} -6" and " v_A^{ideal} " models	_	0.04	\times (high)	10	
	$f_{\rm QLT}$ -100	multiply κ_{\parallel} in Eq. 6 by $f_{\text{QLT}} = 100$	_	5	\checkmark	0.3	
	$f_{\rm cas}$ -5	$f_{\rm cas} = 5 \text{ in } \Gamma_{\rm turb} \& \Gamma_{\rm LL}$	-	0.06	\times (high)	8	
	$f_{\rm cas}$ -50	$f_{\rm cas} = 50 \text{ in } \Gamma_{\rm turb} \& \Gamma_{\rm LL}$	-	2	\checkmark	0.3	
	$f_{\rm cas}$ -500	$f_{\rm cas} = 500$	-	10	\checkmark	0.4	
	$f_{\rm cas}$ -DA	$f_{\rm cas} = (\ell_{\rm turb}/r_{\rm L})^{1/10}$, for a "dynamically aligned" perpendicular spectrum ($\sim k_{\perp}^{-3/2}$)	_	0.02	\times (high)	10	
	f_{cas} -B73	$f_{\text{cas}} = \text{MIN}(1, \mathcal{M}_A^{-1/2})$, for a B73 spectrum above ℓ_A	_	0.005	\times (high)	20	
	f_{cas} -L16	f_{cas} follows a multi-component cascade model from L16	g	0.004	\times (high)	15	
	f_{cas} -K41	$f_{\rm cas} = \mathcal{M}_A^{-1/2} (\ell_{\rm turb}/r_{\rm L})^{1/6}$ for an isotropic, undamped K41 cascade	_	15	\checkmark	0.3	
	NE, f_{cas} -L16	as "Non-Eqm" but with f_{cas} following f_{cas} -L16 model	_	0.01	\times (high)	4	
	NE, f_{QLT} -100	as "Non-Eqm" but with $f_{QLT} = 100$	_	7	\checkmark	0.3	
	ET+SC:	ET+SC: Combined Extrinsic-Turbulence & Self-Confinement (§ 3.4): $\nu_{\text{total}} = \sum \nu_i$ (sum ET+SC terms), $\nu_{\text{st}} = \nu_A^{\text{ion}}$					
lor	A+F+SC100	ET:Alfvén-C00 + ET:Fast-Max + SC: $f_{turb} = 100$	_	2	\checkmark	1	
104	A+SC100	$ET:Alfvén-C00 + SC: f_{turb} = 100$	-	5	\checkmark	0.3	

Refs:

Putting everything we know into the simulation...

Constant diffusion

Extrinsic turbulence

Self confinement

A larger CR diffusion coefficient (3-30)x10²⁹ cm²/s is required (could be still consistent due to anisotropic transport and height of leaky boxes)

Refs: Hopkins+2020, astro-ph://2002.06211

Putting everything we know into the simulation...

Constant diffusion

Extrinsic turbulence

Self confinement

The standard self-confinement model over-predicts L γ , implying too much confinement by a factor of 100!!

Refs: Hopkins+2020, astro-ph://2002.06211

Some open questions

- Whether the standard self-confinement model is consistent with observational constraints? Are significant modifications needed?
- How are CRs above ~200-300 GeV confined? By Alfvenic turbulence or fast MHD waves?
- How are these processes modified in high- β environments (i.e., galaxy clusters)?
- How do CRs affect feedback from stars and SMBHs? (see Karen's lecture on 1/21)

Summary

- CRs are key agents in our understanding of our Milky-Way Galaxy as well as feedback processes in galaxies and clusters
- CRs exchange momentum and energy with thermal gas via plasma waves, which is the core of classical/generalized CR hydrodynamics
- CR physics in galaxies is complex and extreme multi-scale, which poses great challenges to our understanding of plasma physics and galaxy formation

References

- Acceleration of CRs (see F. Rieger's lectures)
- Non-resonant/Bell streaming instability
 - Bell, 2004, MNRAS, 353, 550
- Review articles
 - Zweibel, 2013, PhPl, 20, 055501
 - Zweibel, 2017, PhPl, 24, 055402
 - Amato & Blasi, 2018, Advance in Space Research, 62, 2731