Cosmological Aspects of High Energy Astrophysics ~ Day 3 ~

NTHU Astronomy Winter School @ Online, 2021-01-18-22

Yoshiyuki Inoue

Lecture Schedule Be careful! It may change!

- Day 1:
 - Cosmological Evolution of Gamma-ray Emitting Objects
 - Cosmic GeV Gamma-ray Background
 Radiation Spectrum
- Day 2:
 - Cosmic MeV Gamma-ray Background
 Radiation Spectrum
 - Cosmic Gamma-ray Background
 Radiation Anisotropy

- Day 3:
 - Gamma-ray Propagation in the Universe
 - Probing Extragalactic Background Light with Gamma-ray Observations
- Day 4:
 - Intergalactic Magnetic Field and Gammaray Observations
 - Cosmic Expansion and Gamma-ray Horizon (if possible)

Gamma-ray Propagation in the Universe

Gamma-ray attenuation **Pair creation process:** $\gamma + \gamma \rightarrow e^+ + e^-$

Dwek & Krennrich '13

Coz Nph. Ozo. l

- Threshold: $E_{\gamma}\epsilon_{\rm th}(1-\cos\theta) > 2(m_ec^2)^2$
 - Cross section: $\sigma_{\gamma\gamma} = \frac{3\sigma_T}{16} (1 - \beta^2) \left| 2\beta(\beta^2 - 2) + (3 - \beta^4) \ln\left(\frac{1 + \beta}{1 - \beta}\right) \right|,$ where $\beta = \sqrt{1 - \epsilon_{\rm th}/\epsilon}$
 - Peak: $\sigma_{\gamma\gamma} \approx 0.2\sigma_T \sim 10^{-25} \text{ cm}^2$ $(a) \epsilon \approx 1.0 (E_{\gamma}/1 \text{ TeV})^{-1} \text{ eV}$

Gamma-ray attenuation during the propagation $\gamma_{\gtrsim 100 \text{ GeV}} + \gamma_{\text{EBL}} \rightarrow e^+ + e^-$

- Extragalactic Background (EBL)
 - Integration history of cosmic star formation activity.

See talk by Ellis Owen

Extragalactic Background Light

Extragalactic Background Light (EBL) Integrated Emission from Galaxies in the entire cosmic history

Counting Galaxies Lower bounds on the EBL

EBI f_v(dN_{gal} Credit:NASA, ESA, H. Teplitz and M. Rafelski (IPAC/ Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI)

0.1 0.1

3

Modeling the extragalactic background light theoretically? empirically? observationally?

Model	Evolution	Emission	Pros 😀	Cons 😫	Refernces
Theoretical	Semi-analytical	Stellar Population Synthesis	Applicable to any redshifts	Parameter uncertainty	Somerville+'12; Gilmore+'12; YI+'13
Empirical	Cosmic Star Formation History	Stellar Population Synthesis	Follow the global trend	Comparison to galaxy data	Kneiske+'04; Finke+'10
Observational	Galaxy Luminosity Function	Photometry of galaxies	Robust in the observed universe	Extrapolation to no data regions	Stecker+'92; Franceschini+'08; Dominguez+'11; Saldana-Lopez+'20

Hierarchical Galaxy Formation Semi-analytical EBL Models

early Universe

Dark Matter Halos

Collapse of Dark Halos

Supernova Heating

M. Nagashima

Galaxy Formation Integration of Non-linear physics

- Formation of Dark matter halo
- Contraction & heating of gas
- Star formation
- Supernova/AGN feedback
- Mergers

Can the model reproduce the galaxy evolution? Galaxy Luminosity Functions & Luminosity Densities

Can the model reproduce the galaxy evolution? Cosmic Star Formation History

- Semi-analytical galaxy formation model can reproduce various observables.
 - Because parameters are determined to reproduce various observables.

Spectral energy distribution of Galaxies Stellar population synthesis model (Bruzual & Charlot +'03; Schaerer'03,,,)

Extragalactic Background Light Spectrum From Semi-analytical model

- Semi-analytical model can reproduce the EBL data.
 - Consistent with galaxy counts.

Blazar ~50% of known gamma-ray

Blazars have been discussed as the origin for a long time.

Padovani+'93; Stecker+'93; Salamon & Stecker '94; Chiang + '95; Stecker & Salamon '96; Chiang & Mukherjee '98; Mukherjee & Chiang '99; Muecke & Pohl '00; Narumoto & Totani '06; Giommi +'06; Dermer '07; Pavlidou & Venters '08; Kneiske & Mannheim '08; Bhattacharya +'09; YI & Totani '09; Abdo+'10; Stecker & Venters '10; Cavadini+'11, Abazajian+'11, Zeng+'12, Ajello+'12, Broderick+'12, Singal+'12, Harding & Abazajian '12, Di Mauro+'14, Ajello+'14, Singal+'14, Ajello, YI, +'15,,,,

Measuring EBL Can we measure the EBL?

- Zodiacal light (ZL) is a factor of 100 higher than EBL intensity.
- Diffuse galactic light, Starlight makes
 comparable intensity.

Zodiacal Light Scattered solar emission by dust

- interplanetary dust between Jupiter and Saturn
- Distribute around the plane of the ecliptic
- Brightest foreground for the EBL measurement

http://spiff.rit.edu/classes/phys230/ lectures/ism_dust/ism_dust.html

Direct Measurements of EBL A excess in NIR

- Pioneer 10/11 measurements are consistent with the galaxy count lower limit.
- IRTS, AKARI, & CIBER see the excess in NIR.
- Origin?
 - Cosmological? Nearby?

Is the NIR excess in EBL real? Excess also in the angular power spectrum Cooray et al. *Nature*, 2012 SDWFS $nW m^{-2} sr$ (nW/m²Sr) Matsumoto et al. 2011 60 Kashlinsky et al. 2012 10' 40 oo CIBER = 3000 ·l 10° ∆y (arcmin) 20 AKARI & Spitzer 10-1 $(\ell^2 C_{\ell}/2\pi)^{1/2}$ -20 10-2 -40 10^{-3}

• A large scale fluctuation in the NIR sky (Kashlinsky+'05, '07, '12, Matsumoto+'11, Cooray+'12, zemcov+'15).

5 2 3 4 λ (μm)

Galaxies can not explain this excess.

IHL

Low z

z > 6

• Intrahalo stars (Cooray+'12)?

What makes the NIR excess in EBL? **First Stars? Intra-Halo Stars?**

• Lyman alpha photons from $z \sim 10$ will redshifted to ~ 1 um.

Probing Extragalactic Background Light with Gamma-ray Observations

Extragalactic Background Light (EBL) Integrated Emission from Galaxies in the entire cosmic history

Gamma-ray Opacity of the universe Based on EBL models

- 10 • The opacity is given as $\tau_{\gamma\gamma}(E_{\gamma}, z_{s}) = \int_{0}^{z_{s}} dz \int_{-1}^{1} d\mu \int_{0}^{\infty} d\epsilon \frac{dl}{dz} \frac{1-\mu}{2} \frac{dn_{\text{EBL}}}{d\epsilon} \sigma_{\gamma\gamma}$
- The absorbed spectrum is $F_{\rm abs}(E_{\gamma}) = F_{\rm int}(E_{\gamma})\exp(-\tau_{\gamma\gamma})$
- Optical Depth $\tau_{\mathcal{W}}$ • Beyond z~0.1, TeV photons will be completely absorbed. 0.1

0.1

0.01

10

Exponential cutoff in the VHE band

• The radiation transfer equation becomes: $\frac{dI_{\nu}}{d\tau_{\gamma\gamma}} = -I_{\nu}$

$$\blacksquare I_{\nu}(\tau_{\gamma\gamma}) = I_{\nu}(0)e^{-\tau_{\gamma\gamma}}$$

• Energy $/ + z / \Rightarrow \tau_{\gamma\gamma} / \Rightarrow Flux \searrow \stackrel{\tilde{q}}{\sharp} 0.01$

Reconstruction of EBL using gamma-ray blazars Let's assume the intrinsic spectral shape

EBL Determination Before 2012 Ruling out the cosmological origin for the NIR excess

Dwek & Krennrich '13

- about a factor of 10 uncertainties.
- NIR excess should not be cosmological.