Cosmological Aspects of High Energy Astrophysics ~ Day 4 ~

NTHU Astronomy Winter School @ Online, 2021-01-18-22

Yoshiyuki Inoue

Lecture Schedule Be careful! It may change!

- Day 1:
 - Cosmological Evolution of Gamma-ray Emitting Objects
 - Cosmic GeV Gamma-ray Background
 Radiation Spectrum
- Day 2:
 - Cosmic MeV Gamma-ray Background
 Radiation Spectrum
 - Cosmic Gamma-ray Background
 Radiation Anisotropy

- Day 3:
 - Gamma-ray Propagation in the Universe
- Day 4:
 - Probing Extragalactic Background Light with Gamma-ray Observations
 - Intergalactic Magnetic Field and Gamma-ray Observations
 - Cosmic Expansion and Gamma-ray Horizon (if possible)

"Detection" of the EBL attenuation 150 Fermi blazars using ~4 yr Fermi survey data

• Fermi can cover the SED from 0.1 GeV to > 300 GeV

• Exponential attenuation feature is seen.

attenuation

EBL and its Evolution by Gamma-ray Observations Good agreement with galaxy counts

Determination of the Cosmic Star Formation History Time since Big Bang (Gyr) 6 5 1.213 9 3 $\tilde{\mathbf{O}}$ Consistent with galaxy ·1Mpc survey data. 0.1• Assume the EBL shape. ΥĽ • We may need $\underbrace{\overset{\odot}{\ge}}_{0.0}$ • Empirical EBL modeling based on the latest galaxy EBL reconstruction $\dot{\rho}(z)$ survey data Physical EBL model UV & LBG Survey Data (1)

2

3

Redshift

- - EBL model based on cosmological simulation

 \dot{c}

EBL Determination with GeV-TeV data 38 GeV-TeV detected blazars

Intergalactic Magnetic Field and Gamma-ray Observations

Magnetic Fields in the Universe How strong is the cosmic magnetic field?

Fletcher+'11

• Celestial objects are magnetized.

• Common presence of charged particles form high conductivity plasma in the universe.

InterGalactic Magnetic Fields (IGMF) Toward the understanding of the seed of the cosmic magnetic fields

• Magnetic diffusion: $\lambda_{\rm coh} \ge \lambda_{\rm diff} = \sqrt{\frac{t_H}{4\pi\sigma}} \simeq 10^{13} \text{ cm}$

- Hubble radius: $\lambda_{coh} \leq R_H$
- Zeeman splitting of 21 cm absorption line in quasar spectra (Heiles & Troland '04).
- Faraday rotation in quasars RM $\leq \Delta \chi / \Delta \lambda^2 \propto B_{IGMF} n_{\rho}$ (Kronberg & Simard-Normandin '76; Blasi+'99).
- **Deflection of UHECRs** (Lee+'95).
- Distortion on the CMB measurements (e.g., Jedamzik+'00; Barrow+'97;...)

Gamma-ray measurements can constrain IGMF Pairs Generate Cascade Emission • Primary y-rays are attenuat

- Primary γ -rays are attenuated by EBL: $\gamma_{\text{TeV}} + \gamma_{\text{EBL}} \rightarrow e^+ + e^-$
- Pairs scatters CMBs as secondary γ -rays: $e^{\pm} + \gamma_{CMB} \rightarrow e^{\pm} + \gamma_{GeV}$
 - Energy is $E_{2nd} \simeq \frac{4}{3} \gamma_e^2 E_{CMB} \simeq 0.8 \left(\frac{E_{1st}}{1 \text{ TeV}}\right)^2 \text{ GeV}$
- Magnetic field can deflect the trajectory of pairs.
 - Secondary signals strongly depends on IGMF (e.g., Plaga '95).

Time Delay of Secondarys Dai+'02; Fan+'04; Murase+'08,,,,

• Activity Timescale

•
$$\Delta t_{\text{flare}} \simeq \min - Myr$$

• Angular Spreading

•
$$\Delta t_{\mathrm{Ang}} \simeq \frac{\lambda_{\gamma\gamma}}{2\gamma_e^2 c} \simeq 10^3 \left(\frac{\gamma_e}{10^6}\right)^{-2} \left(\frac{n_{\mathrm{EBL}}}{0.1 \mathrm{ cm}^{-3}}\right)$$

IC Cooling

•
$$\Delta t_{\rm IC} \simeq \frac{\lambda_{\rm IC}}{2\gamma_e^2 c} \simeq 40 \left(\frac{\gamma_e}{10^6}\right)^{-3} {\rm s}$$

Magnetic Deflection

- Deflection Angle $\theta_{\rm B} \simeq \max \left[\frac{\lambda_{\rm IC}}{R_{\rm L}}, \frac{(\lambda_{\rm IC}\lambda_{\rm coh})^{1/2}}{R_{\rm L}} \right]$
 - $\lambda_{\rm coh}$ is the coherent length of IGMF.
- Delay Timescale: $\Delta t = \max[\Delta t_{\text{flare}}, \Delta t_{\text{Ang}}, \Delta t_{\text{IC}}, \Delta t_{B}]$

Gamma-ray Spectrum of Secondary Emission Significant dependence on IGMF

- IGMF dependence appears in the GeV band.
- But, be careful. It also depends on
 - Intrinsic spectrum
 - EBL model
 - Source activity timescale: Δt_{flare}
 - Coherent length: λ_{coh}
 - Jet opening angle: θ_{jet}

Current bounds on the IGMF from the secondary spectrum

- $B_{\rm IGMF} \ge 10^{-19} \, {\rm G} \, {\rm for}$ $\lambda_{\rm coh} \ge 1$ Mpc with $\Delta t_{\rm flare} = 3$ yr
 - at >5 σ confidence level

Neronov+'10

• $B_{\text{IGMF}} \ge 10^{-16} \text{ G for } \lambda_{\text{coh}} \ge 1 \text{ Mpc with } \Delta t_{\text{flare}} = 10 \text{ yr}$

Bounds on the IGMF

- IGMF parameter region is constrained by various methods.
- B • Future CTA observations will shrink the allowed 10-13 region.

 10^{-15} -

Baryogenesis? Please refer to Kamada & Fujita for details...

- Baryon asymmetry may generated through the magnetic activity in the early universe (Givannini & Shaposhnikov '98, Kamada & Fujita '16).
- The required values for the explanation of baryon asymmetry is
 - $B_{\rm IGMF} \simeq 10^{-17} 10^{-16} \, {\rm G} \, {\rm for}$ $\lambda_{\rm coh} \simeq 10^{-2} - 10^3 {\rm \ pc}$ (Kamada & Long '16)

Reionization and Cosmic Expansion

Cosmic Reionization when was the universe ionized again?

• What was the cosmic star formation history in the early universe?

S.G. Djorgovski et al. & Digital Media Center, Caltech

Cosmic luminosity density Estimation from gamma-ray opacity

Constraints on the reioniztion history Constraining galaxy luminosity functions

- Faint-end slope of galaxy luminosity function at high redshift is highly uncertain.
- Current gamma-ray observations constraints some available models.

Hubble-Lemaître law Tension in the H₀

• H₀ characterize the expansion of the universe.

Hubble 1929

Cosmic gamma-ray horizon & Hubble Constant where $\tau_{\gamma\gamma} = 1$

- Cosmic gamma-ray horizon also depends on H₀.
- 0.04 < z < 0.1 is important ($\tau_{\gamma\gamma} = 1$ region significantly changes).

Constraint on H₀ $H_0 = 67.5 \pm 2.1 \text{ km s}^{-1} \text{ Mpc}^{-1}$

• Note: you need to assume the EBL shape.

Day 4 Summary

- Gamma-ray observations can measure the EBL & Cosmic Star Formation History.
- Gamma-ray observations can constrain IGMF.
 - Spectrum, Halo, & Time delay
 - $B_{\rm IGMF} \ge 10^{-16} \text{ G for } \lambda_{\rm coh} \ge 1 \text{ Mpc with}$ $\Delta t_{\rm flare} = 10 \text{ yr}$
- Gamma-ray EBL measurements rules out some of galaxy evolution models from reionization data.
 - It also tells that $H_0 = 67.5 \pm 2.1 \text{ km s}^{-1} \text{ Mpc}^{-1}$.

VHE Spectral Hardening in Blazars Inconsistent with typically assumed SED

 Some blazars show spectral hardening after the EBL correction.

Secondary Gamma Rays? Stochastic Acceleration? KUV 00311-1938 (z=0.61) 1ES 0229+200 (z=0.1396) Secondary Gamma Rays Stochastic Acc. -9.5 γ -induced (low IR) 10⁻¹⁰ $\dot{\gamma}$ -induced (best fit $E^2 Exp[-(E/E_a)^3]$ H.E.S.S. low level EBL CR-induced (low IR -10 $E^2Exp[-E/E_{c}]$ H.E.S.S. high level EBL CR-induced (best fit) 10⁻¹¹ SWIFT $E^2 F_E$ [erg cm⁻² s⁻¹] Becherini et al. (2012) og vF_v [erg.sec.cm²] -10.5 H.E.S.S. I 10⁻¹² • CTA -11 $\propto v^{1/3}$ v^{1/3} 10⁻¹³ 8 -11.5 10⁻¹⁴ -12 **10⁻¹⁵** -12.5 10¹⁴ 10¹² 10¹³ 10^{11} 10¹⁰ 16 18 20 22 24 26 28 14 log v [Hz] E [eV] Takami+'13 Lefa+'11

• Secondary gamma rays from cosmic rays along line of sight (Essey & Kusenko '10, Essey+'10, '11; Murase+'12; Takami+'13).

• Stochastic (2nd-order Fermi) acceleration (Stawarz & Petrosian '08; Lefa+'11; Asano+'14).

